1,695 research outputs found

    Expanded Search for z~10 Galaxies from HUDF09, ERS, and CANDELS Data: Evidence for Accelerated Evolution at z>8?

    Full text link
    We search for z~10 galaxies over ~160 arcmin^2 of WFC3/IR data in the Chandra Deep Field South, using the public HUDF09, ERS, and CANDELS surveys, that reach to 5sigma depths ranging from 26.9 to 29.4 in H_160 AB mag. z>~9.5 galaxy candidates are identified via J_125-H_160>1.2 colors and non-detections in any band blueward of J_125. Spitzer IRAC photometry is key for separating the genuine high-z candidates from intermediate redshift (z~2-4) galaxies with evolved or heavily dust obscured stellar populations. After removing 16 sources of intermediate brightness (H_160~24-26 mag) with strong IRAC detections, we only find one plausible z~10 galaxy candidate in the whole data set, previously reported in Bouwens et al. (2011). The newer data cover a 3x larger area and provide much stronger constraints on the evolution of the UV luminosity function (LF). If the evolution of the z~4-8 LFs is extrapolated to z~10, six z~10 galaxies are expected in our data. The detection of only one source suggests that the UV LF evolves at an accelerated rate before z~8. The luminosity density is found to increase by more than an order of magnitude in only 170 Myr from z~10 to z~8. This increase is >=4x larger than expected from the lower redshift extrapolation of the UV LF. We are thus likely witnessing the first rapid build-up of galaxies in the heart of cosmic reionization. Future deep HST WFC3/IR data, reaching to well beyond 29 mag, can enable a more robust quantification of the accelerated evolution around z~10.Comment: 13 pages, 11 figures, ApJ resubmitted after referee repor

    Very blue UV-continuum slopes of low luminosity z~7 galaxies from WFC3/IR: Evidence for extremely low metallicities?

    Full text link
    We use the ultra-deep WFC3/IR data over the HUDF and the Early Release Science WFC3/IR data over the CDF-South GOODS field to quantify the broadband spectral properties of candidate star-forming galaxies at z~7. We determine the UV-continuum slope beta in these galaxies, and compare the slopes with galaxies at later times to measure the evolution in beta. For luminous L*(z=3) galaxies, we measure a mean UV-continuum slope beta of -2.0+/-0.2, which is comparable to the beta~-2 derived at similar luminosities at z~5-6. However, for the lower luminosity 0.1L*(z=3) galaxies, we measure a mean beta of -3.0+/-0.2. This is substantially bluer than is found for similar luminosity galaxies at z~4, just 800 Myr later, and even at z~5-6. In principle, the observed beta of -3.0 can be matched by a very young, dust-free stellar population, but when nebular emission is included the expected beta becomes >~-2.7. To produce these very blue beta's (i.e., beta~-3), extremely low metallicities and mechanisms to reduce the red nebular emission are likely required. For example, a large escape fraction (i.e., f_{esc}>~0.3) could minimize the contribution from this red nebular emission. If this is correct and the escape fraction in faint z~7 galaxies is >~0.3, it may help to explain how galaxies reionize the universe.Comment: 5 pages, 5 figures, accepted for publication in Astrophysical Journal Letter

    UV Luminosity Functions from 132 z~7 and z~8 Lyman-Break Galaxies in the ultra-deep HUDF09 and wide-area ERS WFC3/IR Observations

    Full text link
    We identify 73 z~7 and 59 z~8 candidate galaxies in the reionization epoch, and use this large 26-29.4 AB mag sample of galaxies to derive very deep luminosity functions to <-18 AB mag and the star formation rate density at z~7 and z~8. The galaxy sample is derived using a sophisticated Lyman-Break technique on the full two-year WFC3/IR and ACS data available over the HUDF09 (~29.4 AB mag, 5 sigma), two nearby HUDF09 fields (~29 AB mag, 14 arcmin) and the wider area ERS (~27.5 AB mag) ~40 arcmin**2). The application of strict optical non-detection criteria ensures the contamination fraction is kept low (just ~7% in the HUDF). This very low value includes a full assessment of the contamination from lower redshift sources, photometric scatter, AGN, spurious sources, low mass stars, and transients (e.g., SNe). From careful modelling of the selection volumes for each of our search fields we derive luminosity functions for galaxies at z~7 and z~8 to <-18 AB mag. The faint-end slopes alpha at z~7 and z~8 are uncertain but very steep at alpha = -2.01+/-0.21 and alpha=-1.91+/-0.32, respectively. Such steep slopes contrast to the local alpha<~-1.4 and may even be steeper than that at z~4 where alpha=-1.73+/-0.05. With such steep slopes (alpha<~-1.7) lower luminosity galaxies dominate the galaxy luminosity density during the epoch of reionization. The star formation rate densities derived from these new z~7 and z~8 luminosity functions are consistent with the trends found at later times (lower redshifts). We find reasonable consistency, with the SFR densities implied from reported stellar mass densities, being only ~40% higher at z<7. This suggests that (1) the stellar mass densities inferred from the Spitzer IRAC photometry are reasonably accurate and (2) that the IMF at very high redshift may not be very different from that at later times.Comment: 38 pages, 21 figures, 20 tables, ApJ, accepted for publicatio

    Understanding the Observed Evolution of the Galaxy Luminosity Function from z=6-10 in the Context of Hierarchical Structure Formation

    Full text link
    Recent observations of the Lyman-break galaxy (LBG) luminosity function (LF) from z~6-10 show a steep decline in abundance with increasing redshift. However, the LF is a convolution of the mass function of dark matter halos (HMF)--which also declines sharply over this redshift range--and the galaxy-formation physics that maps halo mass to galaxy luminosity. We consider the strong observed evolution in the LF from z~6-10 in this context and determine whether it can be explained solely by the behavior of the HMF. From z~6-8, we find a residual change in the physics of galaxy formation corresponding to a ~0.5 dex increase in the average luminosity of a halo of fixed mass. On the other hand, our analysis of recent LF measurements at z~10 shows that the paucity of detected galaxies is consistent with almost no change in the average luminosity at fixed halo mass from z~8. The LF slope also constrains the variation about this mean such that the luminosity of galaxies hosted by halos of the same mass are all within about an order-of-magnitude of each other. We show that these results are well-described by a simple model of galaxy formation in which cold-flow accretion is balanced by star formation and momentum-driven outflows. If galaxy formation proceeds in halos with masses down to 10^8 Msun, then such a model predicts that LBGs at z~10 should be able to maintain an ionized intergalactic medium as long as the ratio of the clumping factor to the ionizing escape fraction is C/f_esc < 10.Comment: 15 pages, 2 figures; results unchanged; accepted by JCA

    A candidate redshift z ~ 10 galaxy and rapid changes in that population at an age of 500 Myr

    Full text link
    Searches for very-high-redshift galaxies over the past decade have yielded a large sample of more than 6,000 galaxies existing just 900-2,000 million years (Myr) after the Big Bang (redshifts 6 > z > 3; ref. 1). The Hubble Ultra Deep Field (HUDF09) data have yielded the first reliable detections of z ~ 8 galaxies that, together with reports of a gamma-ray burst at z ~ 8.2 (refs 10, 11), constitute the earliest objects reliably reported to date. Observations of z ~ 7-8 galaxies suggest substantial star formation at z > 9-10. Here we use the full two-year HUDF09 data to conduct an ultra-deep search for z ~ 10 galaxies in the heart of the reionization epoch, only 500 Myr after the Big Bang. Not only do we find one possible z ~ 10 galaxy candidate, but we show that, regardless of source detections, the star formation rate density is much smaller (~10%) at this time than it is just ~200 Myr later at z ~ 8. This demonstrates how rapid galaxy build-up was at z ~ 10, as galaxies increased in both luminosity density and volume density from z ~ 8 to z ~ 10. The 100-200 Myr before z ~ 10 is clearly a crucial phase in the assembly of the earliest galaxies.Comment: 41 pages, 14 figures, 2 tables, Nature, in pres

    All NIRspec needs is HST/WFC3 pre-imaging? The use of Milky Way Stars in WFC3 Imaging to Register NIRspec MSA Observations

    Get PDF
    The James Webb Space Telescope (JWST) will be an exquisite new near-infrared observatory with imaging and multi-object spectroscopy through ESA's NIRspec instrument with its unique Micro-Shutter Array (MSA), allowing for slits to be positioned on astronomical targets by opening specific 0.002"-wide micro shutter doors. To ensure proper target acquisition, the on-sky position of the MSA needs to be verified before spectroscopic observations start. An onboard centroiding program registers the position of pre-identified guide stars in a Target Acquisition (TA) image, a short pre-spectroscopy exposure without dispersion (image mode) through the MSA with all shutters open. The outstanding issue is the availability of Galactic stars in the right luminosity range for TA relative to typical high redshift targets. We explore this here using the stars and z8z\sim8 candidate galaxies identified in the source extractor catalogs of Brightest of Reionizing Galaxies survey (BoRG[z8]), a pure-parallel program with Hubble Space Telescope Wide-Field Camera 3. We find that (a) a single WFC3 field contains enough Galactic stars to satisfy the NIRspec astrometry requirement (20 milli-arcseconds), provided its and the NIRspec TA's are mlim>24.5m_{lim}>24.5 AB in WFC3 F125W, (b) a single WFC3 image can therefore serve as the pre-image if need be, (c) a WFC3 mosaic and accompanying TA image satisfy the astrometry requirement at 23\sim23 AB mag in WFC3 F125W, (d) no specific Galactic latitude requires deeper TA imaging due to a lack of Galactic stars, and (e) a depth of 24\sim24 AB mag in WFC3 F125W is needed if a guide star in the same MSA quadrant as a target is required. We take the example of a BoRG identified z8z\sim8 candidate galaxy and require a Galactic star within 20" of it. In this case, a depth of 25.5 AB in F125W is required (with \sim97% confidence).Comment: 17 pages, 15 figures, to appear in the Journal of Astronomical Instrumentatio

    Evidence for a fast evolution of the UV luminosity function beyond redshift 6 from a deep HAWK-I survey of the GOODS-S field

    Full text link
    We perform a deep search for galaxies in the redshift range 6.5<z<7.5, to measure the evolution of the number density of luminous galaxies in this redshift range and derive useful constraints on the evolution of their Luminosity Function. We present here the first results of an ESO Large Program, that exploits the unique combination of area and sensitivity provided in the near-IR by the camera Hawk-I at the VLT. We have obtained two Hawk-I pointings on the GOODS South field for a total of 32 observing hours, covering ~90 arcmin2. The images reach Y=26.7 mags for the two fields. We have used public ACS images in the z band to select z-dropout galaxies with the colour criteria Z-Y>1, Y-J<1.5 and Y-K<2. The other public data in the UBVRIJHK bands are used to reject possible low redshift interlopers. The output has been compared with extensive Monte Carlo simulations to quantify the observational effects of our selection criteria as well as the effects of photometric errors. We detect 7 high quality candidates in the magnitude range Y=25.5-26.7. This interval samples the critical range for M* at z>6 (M_1500 ~- 19.5 to -21.5). After accounting for the expected incompleteness, we rule out at a 99% confidence level a Luminosity Function constant from z=6 to z=7, even including the effects of cosmic variance. For galaxies brighter than M_1500=-19.0 we derive a luminosity density rho_UV=1.5^{+2.0}_{-0.9} 10^25 erg/s/Hz/Mpc3, implying a decrease by a factor 3.5 from z=6 to z~6.8. On the basis of our findings, we make predictions for the surface densities expected in future surveys surveys, based on ULTRA-VISTA, HST-WFC3 or JWST-NIRCam, evaluating the best observational strategy to maximise their impact.Comment: Accepted for publication in Astronomy & Astrophysic

    Expanding the search for galaxies at z ~7-10 with new NICMOS Parallel Fields

    Get PDF
    We have carried out a search for galaxies at z ~ 7-10 in ~14.4 sq. arcmin of new NICMOS parallel imaging taken in the Great Observatories Origins Deep Survey (GOODS, 5.9 sq. arcmin), the Cosmic Origins Survey (COSMOS, 7.2 sq. arcmin), and SSA22 (1.3 sq. arcmin). These images reach 5 sigma sensitivities of J110 = 26.0-27.5 (AB), and combined they increase the amount of deep near-infrared data by more than 60% in fields where the investment in deep optical data has already been made. We find no z>7 candidates in our survey area, consistent with the Bouwens et al. (2008) measurements at z~7 and 9 (over 23 sq. arcmin), which predict 0.7 galaxies at z~7 and <0.03 galaxies at z~9. We estimate that 10-20% of z>7 galaxies are missed by this survey, due to incompleteness from foreground contamination by faint sources. For the case of luminosity evolution, assuming a Schecter parameterization with a typical phi* = 10^-3 Mpc^-3, we find M* > -20.0 for z~7 and M* > -20.7 for z~9 (68% confidence). This suggests that the downward luminosity evolution of LBGs continues to z~7, although our result is marginally consistent with the z~6 LF of Bouwens et al.(2006, 2007). In addition we present newly-acquired deep MMT/Megacam imaging of the z~9 candidate JD2325+1433, first presented in Henry et al. (2008). The resulting weak but significant detection at i' indicates that this galaxy is most likely an interloper at z~2.7.Comment: Accepted to ApJ. Replacement includes updated discussion of incompleteness from foreground contaminatio

    From z>6 to z~2: Unearthing Galaxies at the Edge of the Dark Ages

    Full text link
    Galaxies undergoing formation and evolution can now be observed over a time baseline of some 12 Gyr. An inherent difficulty with high-redshift observations is that the objects are very faint and the best resolution (HST) is only ~0.5 kpc. Such studies thereby combine in a highly synergistic way with the great detail that can be obtained for nearby galaxies. 3 new developments are highlighted. First is the derivation of stellar masses for galaxies from SEDs using HST and now Spitzer data, and dynamical masses from both sub-mm observations of CO lines and near-IR observations of optical lines like Halpha. A major step has been taken with evidence that points to the z~2-3 LBGs having masses that are a few x 10^10 Msolar. Second is the discovery of a population of evolved red galaxies at z~2-3 which appear to be the progenitors of the more massive early-type galaxies of today, with dynamical masses around a few x 10^11 Msolar. Third are the remarkable advances that have occurred in characterizing dropout galaxies to z~6 and beyond, < 1 Gyr from recombination. The HST ACS has played a key role here, with the dropout technique being applied to i & z images in several deep ACS fields, yielding large samples of these objects. This has allowed a detailed determination of their properties and meaningful comparisons against lower-z samples. The use of cloning techniques has overcome many of the strong selection biases affecting the study of these objects. A clear trend of size with redshift has been identified, and its impact on the luminosity density and SFR estimated. There is a significant though modest decrease in the SFR from z~2.5 to z~6. The latest data also allow for the first robust determination of the LF at z~6. Finally, the latest UDF ACS and NICMOS data has resulted in the detection of some galaxies at z~7-8.Comment: 18 pages, 8 figures. To appear in Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning Fork Strikes a New Note, eds. D. Block, K. Freeman, R. Groess, I. Puerari, & E.K. Block (Dordrecht: Kluwer), in pres
    corecore